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ABSTRACT built using a 20k word vocabulary supplemented with words from
We describe several language and pronunciation modeling tecrit® development set such that both models have the same coverage
niques that were applied to the 1996 Hub 4 Broadcast News trar2" the development set. Any increase in WER for the 51k model
scription task. These include topic adaptation, the use of remot§2" be attributed to increased acoustic confusability since both the
corpora, vocabulary size optimizatiom,gram cutoff optimization, >k model and the supplemented 20k model have the same OOV
modeling of spontaneous speech, handling of unknown linguisti¢@te on the development set. We ran experiments for the FO and

boundaries, higher ordergrams, weight optimization in rescoring, -1 conditions of the development set: the 51k model results in a
and lexical modeling of phrases and acronyms. 0.92% higher WER on F0, a 0.36% higher WER onF1, and a 0.61%

higher WER on FO and F1 combined. If we assume that acoustic
1. INTRODUCTION confusability grows at most linearly and at least logarithmically with

i vocabulary size, we arrive at the slope values shown in Table 1.
The language modeling component of the CMU 1996 Hub 4 system

was developed through a series of experiments in topic adaptation, the
use of remote corpora, vocabulary size optimizatieigram cutoff

optimization, modeling of spontaneous speech, handling of unknown Linear Slope Logarithmic Slope
linguistic boundaries, higher ordergrams, weight optimization in Condition | (per 10 kW) | (per doubling of vocab
rescoring, and lexical modeling of phrases and acronyms. These FO +0.29 +0.68
experiments were carried out using the Sphinx-18agh recogition F1 +0.11 +0.27

system: one language model was used with the Spliimbecoder FO+F1 +0.19 +0.44

to generatéV-best lists for each utterance, and these lists were then
rescored with an additional language model to produce the final
hypotheses. Table 1: Increases in WER due to acoustic confusability as vocabu-

Much of the work was focused on topic adaptation. Experimentd2'y Size increases.

in topic adaptation have shown promise in terms of perplexity and

word error rate (WER) reduction. We present initial results in fine- . O.OV Rate .WER %WER
tuned story adaptation, where the most similar topic-specific lan- Condition | difference | difference | per %00V
guage models to a particular story are identified from over 5000 FO 1.29% +1.53% 1.19
possible models. The chosen models are then interpolated at the F1 0.84% +1.03% 1.23
word level with a general model, and the resulting model is used for FO+F1 1.03% +1.25% 121

N-best rescoring.

2. LANGUAGE MODELING Table 2: Increase in WER due to OOV's.

The language model vocabulary was chosen to be the 51,000 most

frequentwords in the Broadcast News training data also presentin thEo estimate the contribution to WER of changes in OOV rate, we
CMU pronunciation dictionary. The baseline language model was &ompared the trigram model built with the supplemented 20k vo-
trigram model with Katz smoothing trained on the 130M words of cabulary with a trigram model built with the 20k vocabulary unsup-
Broadcast News training data with singleton bigrams and trigramgplemented with extra words from the development set. As the two
excluded. The perplexity of the Hub 4 development set using thisrocabularies are nearly the same size, any difference in performance

model is 231. can be attributed to the change in OOV rate. Table 2 shows the in-
. . . creasein OOV rate and WER of the 20k unsupplemented vocabulary
2.1. Vocabulary Size Optimization over the 20k supplemented vocabulary. The itesgiWER increase

To investigate the effect of vocabulary size on recognition WER,PE' OGV-point is also shown for each caifoh.

we used the methodology developed in [8]. The change in WERGiven an estimate of the OOV rate for a given vocabulary size, we
produced by an increase in vocabulary size is composed of two maican then estimate the associated WER using the above coefficients.
factors: an increase in WER due to the increased acoustic confudhe results of this calculation for FO and F1 combined are plotted
ability between words in the vocabulary, and a decrease in WER duia Figure 1 and show how WER varies with vocabulary size. This
to a decreased out-of-vocabulary (OOV) frequency. To estimate thégure suggests that a vocabulary in the range of 40k — 60k would be
contribution to WER of acoustic confusability, we compared a tri- appropriate for the Broadcast News task, at least for FO and F1. See
gram model built using a 51k word vocabulary with a trigram model[8] for analogous experiments on the NAB corpus.
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confusability and OQV rate, FO+FDbndition.

wherew: = 1, s1(H) = logp(A|H), w2 = «, s2(H) = logp(H),
. .. . w3 = p;, andsz(H) = l(H); i.e, the total score of a hypothesis is
2.2. Linguistic Boundaries a linear combination of several individual scores of the hypothesis.

In the Hub 4 task, the test data is divided into acoustic segments th%learly, we need not restrict ourselves to three scores: as tou_ched
0 later, we attempted to improve performance by using multiple

do not generally correspond to linguistic segments such as sentenchh h dofi

acoustic segments often contain multiple sentences. While the te guage scores instead of just one.

data does not contain sentence boundary information, this informdn order to combine multiple scores effectively, it isaessary to
tion is presentin the training data. To modelthose trigrams in the testhoose appropriate values for the weightsin equation (1). To
data that cross sentential boundaries, counts for cross-boundary do this, we use a similar methodology as developed in [6]. We
grams were added into the trigram model. Thatis, for every sentendeplemented Powell’s algorithm as describedNimmerical Recipes
boundaryw_,w_1</s><s> wow; in the training data, the trigrams in C [7, pp. 309-317] to automatically search for optimal weights
w—_pw_1wo andw_1wow; Were given counts, in adibn to the stan-  given a set ofV-best lists and the corresponding hypotheses’ error
dard trigrams. Adding the cross-boundary trigrams to the standarthtes. We search for the valueswof that minimize the WER of the
51k language model lowered the perplexity on the development sdtighest scoring utterance in eadhbest list.

from 231 to 224. To evaluate the WER of a given set of acoustic and language scores

on test data, we use two-way cross validation. We split the test
2.3. Spontaneous SpeeCh data into two halves; in evaluating the number of errors in each half

Filled pauses were not adequately represented in tigeiege model ~ We use weightss; optimized on the other half of the data. Unless
training data, and their probabilities were severaglerestimated ~Otherwise specified, all WER's in this paper were produced using
in the baseline trigram model. In addition, silence (unfilled pausefhis methodology.

events are never represented in transcripts. These problems were ad- .

dressed by creating a special pause dictionary in the decoder. EaghD. Smoothing

filled pause entry in the pause dictionary was assigned a unigra . . . .
probability which was estimated from its frequency in the acoustzllse. C;ggzrriﬂ;\’tvhc;ndg;ﬁ[%e:;jr}zﬁgghé:?\lgcgmggf;;g[tsrigrirrgimcr’lg'

tic training data transcripts. The unigram probability of the silence )
eventsil> was estimated from the forced alignments of the acous?" 130M words of Broadcast News data, we measured a perplexity

tic data. The unigram probabilities were used as thguage model of 237 f_or Katz sm_oothing af‘d a perplexity of 219 for Kneser—Ngy
score for these events in the decoder. All entries in the pause dicm©0thing on the first two-thirds of the developmentset. By adding

tionary along with their unigram probability estimates are shown inextrg parameters to Kneser-Ney smoothinge lowered the per-
Table 3. These events were also skipped by the trigram when it pre,p-Iexlty to 211.
dicted words that follow them. Using this method with a Kneser-NeyWe then compared these smoothing techniques on speech recognition
smoothed trigram model, perplexity decreased from 211 to 180. WER, by rescoringV-bestlists producedfrom BroadcastNews data.

. L . On FO data, Katz smoothing and Kneser-Ney smoothing yielded
2.4. Weight Optimization nearly identical WER’s: 19.4% v. 19.586.

As in common practice, the total scaréf ) we assign to a hypoth-
esis transcriptior is

linstead of using a single absolute discoltwe use separate discounts
D1, D, and D3y for 1-counts, 2-counts, and counts 3 and above, respec-
s(H) =logp(A|H) 4+ alogp(H) + p:l(H) tively. The values of these parameters are optimized on held-out data.
2There was a difference in performance when the word-insertion penalty
. . . was excluded: Kneser-Ney smoothing yielded 19.9% WER while Katz

where logo(A|H) is theacoustic scorelogp(H) is thelanguage  gmoothing yielded 20.8% WER. This indicates that perhaps the word-
scorg« is thelanguage weighp; is theword insertion penaltyand  insertion penalty compensates for the difference in performance seen in
I(H) is the number of words in the hypothe&ls We can re-write  perplexity between the two smoothing techniques.



set of about 75M words), a 7-gram model has 15% lower perplexity
than a trigram model. In addition, from the graph it seems likely
this difference will be greater for larger training sets. These results
indicate thatit may be worthwhile to use higher-ordegram models
when a large amount of training data is available. When trained on
130M words of Broadcast news data, a 7-gram model yielded about
a 10% lower perplexity than the corresponding trigram model.

However, using higher-order-gram models produced mixed results
in terms of speech recogion WER on Broadcast News data. With
one acoustic model, the use of a 7-gram modéV¥ ibest list rescor-

ing resulted in a reduction in WER from 19.5% to 18.8% on FO
and 40.8% to 39.8% on F3 over a trigram model. However, with a
different acoustic model the use of a 7-gram model resulted in an
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% perplexity difference relative to trigram model
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10000 100000 10+06 1or07 increase in WER of about 0.1% absolute.
training set size (words)
3. LEXICAL MODELING
Figure 2: Perplexity of test data ef-gram models for various In lexical modeling, we tried to better represent increased coartic-
relative to a trigram model, for a range of training set sizes, AP new4!lation for spontaneous speech as well as frequent acronyms. To
data. detect pronunciation modeling weaknesses, the decoder was run on

the development set and the training set (FO and F1 only) of the 1996

data, producing a wordtiice for these utterances. A reference word
2.6. n-Gram Cutoff Optimization or word sequencethat did not show up in the word lattice was flagged

) _ _ o as a potential pronunciation modeling error. The sequence was not

Several different bigram and trigram cutoff combinations were testeq|agged if it showed up within 10 frames of its expected segmentation,
for the language model with Katz smoothing. Perplexity results areys defined by the forced alignment of the reference transcript. The
shown in Table 4. Neither singleton trigrams nor singleton bigramsagged sequences were examined manually by viewing the wave-
proved significant inV-best rescoring. form, listening to the whole speech file, looking at the decotiieég
and referring to the 51K dictionary (the SPHINX Il lexicon) for the
existing pronunciations. When it was determined that the pronuncia-

Bigram | Trigram | Cross-boundary tion model was lacking, corrective action was taken. For some words,
Cutoff | Cutoff Trigrams? | Perplexity alternate pronunciations were added. In the case of strings of short
0 0 yes 223 words, such abwant tobeing pronouncetAY W AH N AH/the
0 1 yes 222 whole phrase was added as a separate entry in the dictionary. About
1 1 yes 224 250 phrases, including multiple @munciations, were added in this
1 1 no 231 way.
0 2 no 230

In addition, the 147 most frequent acronyms in the BN language
corpus, representing some 85% of the acronym tokens, were added
Table 4: Perplexity results using different bigram and trigram cutoffs 25 €ntries in the lexicon (besides being represented letter by letter
pextty ¢ g g —i.e. C_N._N. aswell as C. and N.). The main motivation
behind this was the hypothesis that sequences of short, acoustically
2.7. Remote Corpora confusable words such as individual letter names, are likely to lead

Alanguage modelwas built from the 230MW North American Busi- to search errors.

ness News corpus, and was interpolated with the 51k baseline latdsing both the phrases and the acronyms, preliminary results on the
guage model at the word level. Using a weight of 1/3 for the NAB FO portion of the development set showed a 0.4% absolute reduction
model, development set perplexity was reduced by about 10%. Usinigg WER. Results on the F1 portion (where more coarticulation effects
the interpolated language score férbest rescoring did notimprove are expected) could not be compared in a controlled way due to
recognition results for FO and F1, and only slightly improved resultschanges in other components of the system, but we estimate that the
for F2. WER improvement there was significantly higher.

2.8. Higher-Order n-Gram Models 4. TOPIC ADAPTATION

We investigated the use of higher-ordegram models, considering We are currently looking at methods of topic adaptation in unre-

models as large as a 7-gram with no cutoffs. To make these modetgricted domains, using the BN domain as our testbed due to its
practical, we construct only those parts of the models required tgemantic richness. Adapting statistical language models using topic
evaluate the given test data. information has been successful in the past (for example, [1, 3, 10]),
In Figure 2, we display the reduction in perplexity on test databutthe ma_jc_)rity_ of adaptation attempts have_focused either on a one-
relative to a trigram model of-gram models for various on AP of-N classmcatlon_, where a new document_ls_ a_lssum_ed to belong to
news datd. The z-axis describes the size of the training set used.Only one of a (typically small) number of disjoint topic sets, or on

For the right-most point in the graph (corresponding to a trainingCoarse topic clgssmcatlon, where only a few topics are d(_aflm_ed. Bgt
in real applications, every document, story or conversation is typi-

3We use Kneser-Ney smoothing [5]. cally a unique and hitherto unseen combination of several elemental




topics. We are experimenting with a language model adaptatioslustering does not always result in optimal clustering decisions, we
scheme that takes a new piece of text and finds the most similare currently investigating semi-automatic methods where the system
topics from over 5000 clusters from the training data. Stories fromasks for cues whenever its confidence in its clustering decision is
the Broadcast News corpus that share similar topics are gatheredeak.

into a set of clusters based on manually-assigned keywords that Wezf . .

presentin the corpus. THitf x idf) measure, popular in information  4-2. Finding Similar Clusters

retrieval, is used to find the clusters that are most similar in topicyce we have a set of topic clusters, the text in each cluster can
to the text we are decoding. Language models built from the mosie represented as a vector containing a weighted entry for each
similar topic-specific training clusters are interpolated with a generabnique word. Formally, if a cluster containgdistinct words, the
trigram language mode|, arid-best hypotheses are rescored with a ¢ ster text can be represented asdimensional vector of weights
topic-specific language model score. We report on a series of expefy. _ (wiz, wiz, wia, . . ., wir), where one weight is assigned to

iments designed to investigate the reductions in perplexity and wordl, 1 unique word. The weight of each word in the vector is given by
error rate made possible by such adaptation. the(tf x idf) measure frequently used in information retrieval [9]:

4.1. Clustering w;y, = tf,, log(N/nx) )

In the Broadcast News corpus, story boundaries are marked anthe term frequencyf, is the number of times wordl appears in
keywords have been manually assigned to each story. Topic clusteeduster;. The inverse documentfrequency componifitcomputes

are created by defining each unique keyword as a label for a clustethe log of the ratio ofN, the total number of clusters, te., the

For each keyword, all stories that have that keyword are assigned taumber of clusters containing wovd This weighting function

its particular cluster. Each keyword-cluster is then a candidate to bassigns high values to topic specific words, which are those words
used in future adaptation. that appear with high frequency within one cluster but appear in
{elatively few other clusters. Words that occur in many clusters,
or that occur with low frequency, are deemed more general and are
assigned low weights.

An interesting feature of this type of clustering is the presence o
data overlap between clusters. If one story contains five differen
keywords describing its content, then the text for the story will ap-
pear in five different clusters. Data overlap between clusters doeSiven a new text represented by weight vedidy, the topic simi-
not present a problem when calculating the similarity between eaclarity between cluster and the new text can be computed with the
cluster and a new piece of data. However, if agglomerative clusteringpllowing cosine measure [9]:

were to be used to merge similar clusters in order to reduce the num-

ber of distinct topics in the training data, the effects of data overlap SO wjkwik
on the measure of cluster similarity would need to be considered. sim(Dy, D;) = k=1 (3)
Excluding the overlapping data from all similarity calculations may \/ZZ=1(wjk)2 ZZ:l(wik)z

be sufficient; however, valuable topic information is lost in the clus-

tering decision process by not considering stories where two nodeBquation 3 gives the cosine of the angle between the two vectors
are obviously related. Other possible solutions include assigning halepresenting the two sets of text. It is normalized for vector length, so
of each duplicated story to each leaf, or using supervised clusteringhat large clusters are not favored. This similarity measure produces
to make reasonable decisions. a high value when the two texts being compared are similar, with a

Agglomerative clustering has been used successfully for topic adap@!ue of 1 when they are identical. A similarity value of zero means
tation in a mixture modeling framework [1, 3]. However, one advan-that the topics of the texts are unrelated.

tage of retaining a high number of individual topic c_Iusters, |r_1_stead4_3. Model Interpolation

of merging the clusters down to a small number, is the ability to

make fine distinctions between different subjects and mix unusuarhe similarity between the hypothesized transcription produced by
topics together that may occur in a future story. As similar clusterghe first decoder pass and each cluster is calculated. Even if the
are merged together, they lose their topic focus, but they acquire therror rate of the original hypothesis is significant, the errors should
advantage of having additional data to build more statistically soundhot be topic correlated, and the correct content words in the hypoth-
language models. esis should provide enough weight for the selection of appropriate

One way to combine the advantages of having larger clusters due fgusters. For the experiments presented here, only leaf clusters (el-
agglomerative clustering and having the topic focus of a large numbé?'mental tOP'CS_) are used for toplc_ adaptation. Indwidual language
of individual clusters is to build #opic tree The basic clusters models_ are built from the most similar clusters,_and the cluster mod-
defined by the keywords from the corpus constitute the leaves of thg!S r€ interpolated together at the word level with a general language
tree, and agglomerative clustering is used to merge similar clusteﬂér'pqel (the root of_the topic tree) using \_/velghts obtalne_d by mini-
together up towards the root. When complete, each path from ledfZind the perplexity of the hypothesis with the EM algorithm. The
to root specifies a set of nodes that start out in a very distinct topic, -best lists for th_e hypothes_ls are then rescored according to the
and then gradually become more general as the clusters becorff19uage score given by the interpolated language models.

larger. At runtime, automatic topic identification is performed on4_4. Experiments

a decoded document and results in a small number of active lea

topics. Language models built at various nodes along the activ@hetraining data used in these experiments for topic adaptation is the
paths from leaf to root can be combined to best model the currerBroadcast News corpus obtained from Primary Source Media. The
document. The language models along the active paths benefit froatata covers the period from 1992-1995 and consists of IH6m
additional data, whereas leaf models, which may be quite smallwords. Story boundaries are marked, and each story is accompanied
retain the advantage of being very specific. Since automatic topiby a set of keywords that describe the story’s content. The corpus



was split into topic clusters by collecting the keywords from all

stories and assigning each keyword to a cluster. The text for each Top Number of clusters considered
story was assigned to the clusters of the story’s keywords. Many of Matches|| 500 | 1000 | 5883

the keywords have sub-categories, in which case the sub-categories 5 227 | 226 227

were separated from the main keyword and treated as keywords 10 222 | 200 226
themselves. For the four years worth of data, 8806 topic clusters 20 211 | 203 200

were created in this manner. The number of topic clusters was then Baseline Perplexity = 243

reduced by excluding from the clusters all stories that contained more
than six keywords. These stories tend to be summarization reports
of many news events. All clusters that contained only one story werdable 6: Perplexity for Story A interpolating different numbers of
also eliminated due to a lack of sufficient data to accurately represemhodels.

that topic. Additionally, clusters belonging to non-topic keywords,

such as U. S. state names, were chosen to be excluded after manual

inspection. A total of 5883 clusters remained for topic adaptationinterpolating the 20 most similar clusters chosen from among all
No agglomerative clustering was used in this set of experiments. 5883 clusters. Adding adtibnal models may reduce the perplexity

ven more. The experiments above have an unrealistic componentin
The most frequent 63k words from the four years of Broadcast New at the correct story transcripts were used to select the most similar

text defined the vocabulary for calculating cluster similarity. The 4 . > A
Hub 4 development setwas used as the test set. The story boundar?e"’és'terS o use for interpolation. Therefore, instead of using the

g L : rrecttranscripts, errorful transcripts for these two stories were next

e o 515 e 1 M Sfenerate by alang . estists (1~ 500 ot St o

' ’ the development set, and choosing the highest scoring hypothesis for
Two of the largest stories from the test set were chosen for initialeach segment of the story. The transcripts for both stories have aword
adaptation experiments. Story A (791 words) is about the Helmsrror rate of 45%. The similarity between the errorful transcripts and
Burton Act and the United States’ efforts to keep other countriesall 5883 clusters was computed, and the top 10 most similar clusters
from doing business with Cuba. Story B (2131 words) discussesor story B are shown in Table 8. It is interesting to note that even
the suspicions of drug use by Chinese swimmers during the 199@sing very errorful transcripts, many of the same clusters are chosen
Olympics. The similarities betwe@ach story and the mostdatarich as when using correct transcripts.
500 and 1000 clusters, as well as all 5883 clusters, were calculate
The 5, 10 and 20 most similar clusters were chosen foreach case. T
10 most similar clusters for story B chosen by ftfe< idf) measure
when all 5883 clusters were considered are shown in Table 5.

réterpolating the 5, 10 and 20 most similar language models, opti-
mizing interpolation weights on half of the correct story transcript at
atime, yields the perplexity values shown in Table 9. The addition of
errors into the hypothesis transcript hurts the perplexity performance
of the topic models on the correct story text. However, the adaptation

Story B - Correct Transcript still improves perplexity over the baseline performance by 8% for
Similarity | Cluster Keyword Story A and 16% for Story B.

0.306 China Most importantly, we'd like to know if using the interpolated lan-
0.296 Olympic Games guage model weights will help improve the word error rate of Story
0.252 | Olympic Games, Barcelona, 1992 Aand Story B in anV-best rescoring paradigm. Rescoring the com-
0.244 Favored nation clause bined N-best lists (N = 500) from both stories (2922 words) with
0.212 Chinese Americans the original acoustic score, a language score and a word insertion
0.212 Drug testing penalty results in the WER’s shown in Table 10. THfe column
0.211 Olympic Games, Atlanta, 1996 indicates whether or not filled pauses were predicted from their un-
0.209 Intellectual property rights igram probabilities, and thBosteriorcolumn indicates whether or
0.195 Swimming not the model interpolation weights were weighted by the unigram
0.183 Athletes probability of the last word in the history [2].

Rescoring Stories A and B with the topic language score results in
a lower word error rate (41.7%) than using the Katz trigram score
(42.6%). However, more improvement was obtained by rescoring

. . with the Kneser-Ney trigram model (40.9%). The evaluation setwas
Our baseline 51k general trigram backoff language model was used

for the first-pass Sphinx Il recognitidmypothesis reported below.
The 51k vocabulary was used to create trigram backoff language

Table 5: Ten most similar clusters out of 5883 for Story B.

models from each of the most similar clusters. The cluster language Top Number of clusters considered
models and the 51k general language model were interpolated at Matches || 500 [ 1000 | 5883

the word level, with weights obtained using half of the correct story 5 2111 211 220
transcript. The perplexity was computed using these weights on the 10 510 | 211 204

other half of the story. The two perplexities computeddach story 50 510 210 199

half were combined to give the overall perplexity of the story when Baseline Perplexity = 262

using topic-specific language models. Using only the general 51k
trigram language model, we obtain a perplexity of 243 for Story A

and 262 for Story B. Perplexity results are shown in Tables 6 and 7y 7. Perplexity for Story B interpolating different numbers of
The lowest perplexities for these two stories were obtained whemodels.




Similarity | Cluster Keyword Gra
0.377 China
0.308 Favored nation clause
0.279 Chinese Americans
0.279 Olympic Games
0.261 Intellectual property rights
0.246 Chinese in the United States
0.243 Olympic Games, Barcelona, 1992 2.
0.225 Wu, Harry
0.223 Civil rights
0.216 Zemin, Jiang

1.

Table 8: Ten most similar clusters out of 5883 for Story B.

rescored using the topic language score (N = 200.) The topic score
lowers the 2nd pass decoder output WER from 35.5% to 35.3%, but
the Kneser-Ney score results in a WER of 34.9%. Although the 5,
topic score decreases the overall WER, better results are obtained
by rescoring with a Kneser-Ney trigram model. Future work will
focus on Kneser-Ney smoothing for topic models, agglomerative
clustering, and model selection and interpolation in the contextof a g,
topic tree.

5. EVALUATION SYSTEM

Our final evaluation system employed two different language mod-
els. A Katz-smoothed trigram language model with cross-boundary 7-
trigrams, excluding singleton trigrams and bigrams, using the 51k vo-
cabulary that was supplemented with 208 phrases and 147 acronyms,
was used for two decoding passes. After the two pagsesest 8.
lists (V = 200) were generated from the decoddtidas, and the
N-best hypotheses were rescored using a Kneser-Ney-smoothed tri-
gram model with no cutoffs. Both language models predicted pauses g
using the unigram probabilities shown in Table 3.

_ cies, either expressed or implied, of the U.S. Government. The first
Story B - Errorful Transcript authoris additionally supported under a National Science Foundation

duate Research Fellowship.
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authors and should not be interpreted as representing the official poli- |_L@nguage Score | FP | Posterior) Story A+B WER
Oracle (bestin list) 34.4%
Katz 3-gram no N/A 42.6%
Kneser-Ney 3-granm no N/A 41.8%
Top 5883 Clusters Considered Kneser-Ney 3-gram yes N/A 40.9%
Matches| Story A Story B Topic no no 42.0%
5 227 233 Topic yes no 41.7%
10 225 223 Topic no yes 42.1%
20 224 221 Topic yes yes 41.7%

Table 9: Perplexity for Stories A and B, choosing clusters with Tab

le 10: WER's for Stories A and B combined, using different

errorful transcripts. language scores.



